Lurrent Triggered storing

Acceleration

DEVICE I/Os General I/Os

ANALOGUE INPUTS

Voltage, current, temperature, vibration, strain gauges DEWESoft[®] X offers the interface to all DEWESoft[®] instruments like DEWE-43A, DS-NET, SIRIUS. The perfect match of DEWESoft[®] hardware and software allows powerful technology like high dynamic dual-core AD,

> Sandwidth 1980 Hi

auto-detection, TEDS and many more. Up to 2000 analogue channels with sampling rates from kS/s to MS/s up to 24 bit vertical resolution are supported.

CHANNEL SETUP GRID

Just double click one amplifier in the picture of the system configuration shown on the left: the channel setup will open. Select multiple channels to set them to e.g. IEPE mode. In bigger systems use the search field to quickly find the wanted channel.

CONNECTOR WIRING DIAGRAMS

Depending on the used amplifier and operation mode, the correct connector pinout and the needed connections to the sensor are shown. No need to search for additional documents.

	Unused	A1 3	SRUS-OIG+	30 V	IIPE		0.000	10.00	v	Zern	Setup
	Unused.	A1 4	SIR0./5+4Vv2	1200 V	Voltage	-1200.00	0.00	1200.00	v	Zero	Setup
ł	Unused	A1 5	SIR3.IS-STOV2	50 V	Voltage	-50.00	0.001	50.00	v	Zero	Setup
	Unused	A1 6	SIRIUS-STOMV3	90 V	Voltage	-10.00	0.165	20.00	v	Zero	Setup
	Unused	A2 7	SIRIUS-LVV2	200 V	Voltage	-200.00	0.00	200.00	v	Zero	Setup
	Unused	A1.8	SIRIUS-MA	30 V	Voltage	-10.00	-0.057	20.00	v	Zero	Setup

CREATING SMART SENSORS (TEDS)

Now it is possible to create "smart sensors" inside DEWESoft[®]. Just equip the sensor with a chip, and store scaling, offset, calibration data ... according to the TEDS standard – and beyond! DEWESoft[®] X additionally stores the amplifier settings to the chip: just connect the sensor, everything is set up and you can start the measurement!

Serial number		
Model		
Manufacturer	Dewesoft	~
Calibration date	20/07/2017	
Calibration period	730 Cal initials	

AUTO-DETECTION OF HARDWARE

When plugging in the USB connector, the power and synchronization status of the system is checked and displayed. This self-check helps identifying if all cabling is done correctly.

A DEWESoft X3											
Device Name	Serial Number	Power	Sync								
DS-VGPS-HSC/DS-CLOCK	D042DA5D59	-	4-								

COUNTER INPUTS

DIGITAL INPUTS

Signal A	CNT_IN0	-
Signal B	CNT_IN1	•
Signal Z	CNT_IN2	-

Each counter input consists of 3 digital inputs. They can also be used seperately.

WAV	EFORM	TIMI	NG

EVENT COUNTING

- ▶ Basic event counting
- ▶ Gated event counting
- ▶ Up/Down counting
- Basic encoder counting

FUNCTION 2: FUNCTION GENERATOR (MODAL/SHAKER CONTROL)

No need for additional analogue out hardware any more! The Function generator is able to output signals like sine, triangle, rectangle, saw or even an arbitrary table. This can be done continuously or in Sweep / step sweep / burst / ... and many more. Fine-tuning can be done LIVE during measurement.

FUNCTION 4: CHANNEL OUTPUT

You can output any DEWESoft channel (even math or CAN channels) to the analogue out BNC connectors. Also manual channel control is possible during LIVE measurement:

Choose from many different instruments like bar, turn knob, button or text box...

VIDEO INPUT

Synchronized video acquisition from web-, thermoand high speed cameras

For applications requiring video which is truly synchronized to the dynamic sample rate, there is support for DS-Cameras. A high quality image with automatic shutter speed (selectable) is controlled directly by the A/D card, which generates a pulse to drive the camera. The result is a stunning correlation between each frame and the data. Direct X webcams are also supported!

Thermo cameras are supported from FLIR, NEC and MICRON, and high speed cameras from Photron which can acquire more than 100000 frames per second.

GIGE

Plugin supports GigE vision cameras which are directly connected to the Gigabit-LAN port of your system. DEWESoft is clocking the camera to synchronize with other inputs. Cameras are directly connected to the Gigabit-LAN port of your system. In triggered mode, DEWESoft is clocking the camera.

FLIR THERMOVISION

Plugin adds support for data visualisation, analysis and storage of FLIR Thermovison cameras (models: A300, A310, A315, A320, A325, A615, SC305, SC325, SC645, SC655).

▶ FLIR thermovision cameras support

PHOTRON

Adds video support for Photron hi-speed cameras. Allows video data acquisition of megapixel image resolution recording at up to 20,000 fps and up to 2.000.000 fps with limited resolution (depends on camera model). Video is fully synchronized with other data sources. Supports software or external triggering.

- ▶ multiple camera support
- ▲ fully synchronized

VEHICLE BUS INTERFACES

CAN, OBDII on CAN, J1939 and J1587 interface support

	FORMUN_1	- 010-, 210
28127-312		00 54 88 FC F0 00 20 58
28127,996	22 29 24 AE 34 82 94 7#	
00-07-804	10 50 23 ME NO 41 94 72	
89(97,475		60 E4 D6 PT 70 60 50 83
421-31.924	25 62 22 AB P0 AB 94 3C	
52:37,568	98 MA 20 AE 20 M0 %4 18	
521-37,956		90 84 C6 PC 70 99 90 23
20127.004	29 15 15 10 10 17 H TA	
	Rec Rec	
RI- GOOT EVA	Net AND ADDRESS NOC	

One of the most important vehicle buses today is the CAN (controller area network) bus. DEWESoft® X supports following CAN devices: DEWE-43A, DS-NET, DS-CAN-2 and SIRIUS. Today the CAN bus is present in cars, trucks, boats, tanks, tractors, harvesters and basically anything which has a modern engine built in.

GPS INTERFACES

Advanced GPS support and capabilites

GPS technology is used in three main application areas: to find the position on earth, to determine the velocity of an object and to get precise absolute time information.

DEWESoft[®] X uses all three areas. For basic positioning, DEWESoft[®] supports NMEA 0183 GPS interfaces. If you have a GPS receiver which sends the data according to NMEA 0183 specification, it will work in DEWESoft[®] up to a real-time rate of 500 Hz.

DS-IMU PLUGIN

	Connected			Heading	not ready		Stende	lone	Used satellites:	9	Rep	et device
Deta	Mounting	ionitig	uration	About								
Channel	ate		Speed	int		Accelerat	ton unit					
50 Hz	v		m/s		v	m/82		• [Reset distance when	neasurener	starts	
Index	Used	c		Char	nnel name		Units	Min	Values	Мах	Scale	Offse
0	Unused	1	Tine					0.F	42915-3139537937	DF	1.00	0.00
1	Unused		Latitude				deg	-540	47*08-538	5400	1.00	0.00
2	Unused		Longh	ide			deg	-208	15*31.485	1090	1.00	0.00
3	Unused		Height				m	0.00	596.313	1000	1.00	0.00
	Unused		Velocit	North			m/s	0.00	0.387	500.00	1.00	0.00
5	Unused		Velocit	,East			m/s	0.00	0.184	500.00	1.00	0.00
6	Unused		Velocit	ne0_y			m/s	0.00	0.018	500.00	1.00	0.00
7	Unused		Velocit	Total			m/s	0.00	0.429	500.00	1.00	0.00
8	Unused		Softwa	re_distant	oe .		m.	0.00	0.000	1000	1.00	0.00
.9	Unused		Velocit	x,			m/s	0.00	0.395	500.00	1.00	0.00
10	Unused		Velocit	13Y			m/s	0.00	0.166	500.00	1.00	0.00
11	Unused		Velocity	LZ.			m/s	0.00	0.018	500.00	1.00	0.00
12	Unused		Body_J	scceierato	n_X_		m/52	-160.00	-0.1%	160.00	1.00	0.00
13	Unused		Body_	coeleratio	n_¥		m/82	-160.00	-0.559	163.00	1.00	0.00

- ► Fast and easy configuration of DS-IMU2, DS-IMU1 and DS-GYRO1 products
- ▶ Correction of alignment offset and GNSS antenna offset
- ► Additional calculation of position, velocity, acceleration, slip angle for 5 additional reference points
- Multiple instances of DS-IMU and DS-GYRO products are supported

ETHERNET RECEIVER

Chaopel n	ame		ì	lata	cha	onel						D	ta f					6	Winte	rola									
					-		_	-	-	-		De	ta t	-				ł	inere i		_	-	-	-					
				-		-				-		<u> </u>	~						10	1.0	_				-0				
units Tulur											6																		
			2		-								A																
in value	Auto				tax '	value	A	uto					Str	rtb	de.			- 2	2	_	_	-	_	-	-				
													Sta	rtb				ō	1	-	-	-	-	-	-				
actor	1												Ler	oth	lbib	3			6	-	-	-	-	-	-				
Offset	0														-	÷													
15 16 00 00 1 00 00 2 00 00 2 00 00 2	7 18 10 61 10 61 10 61 10 61 10 61	19 3E 3D 3A 38 37	20 00 00 00 00	21 00 00 00 00	22 80 80 80 80 80	27 11 11 11 11 11	24 54 54 54 54 54	83 84 87 89 84	288888 C	27 A8 A8 A8 A8 A8 A8	28 01 01 01 01 01	25 8C 8C 8C 8C 8C	30 C0 C0 C0 C0 C0	31 A8 A8 A8 A8 A8	50 01 01 01 01 01	37 FF FF FF FF	DA DA DA DA DA	75 C6 C6 C6 C6 C6	56 13 13 13 13 13	17 89 89 89 89 89	38 00 00 00 00	50 00 00 00 00 00 00 00 00 00 00 00 00 0	40 7F 79 67 4A 27	40 SD 25 DD 25	42 00 06 18 34 58	4) 00 43 71 63 71	4 00 00 00 00	45 0A 0A 0A 0A	1
HEX.	Dec		ASA						L <u>e</u>	0	201	_															0	ĸ	

Ethernet sniffer with simple filtering capabilities and data decoding in order to extract data channels from ethernet streams. Streams can be filtered by various parameters like MAC and IP addres, source and destination port or by manual data filters.

Supports many data encodings: intel, motorola, signed, unsigned, IEEE float:

Linear and non-linear (polynomial) scaling is possible.

- ▶ can receive multiple ethernet streams
- ▶ different filters capabilities (TCP/IP, UDP, data filter,...)
- ▶ data decoding with various formats (intel, motorola, float, signed,...)
- ▶ linear and non-linear scaling

Automotive I/Os

CAN

DH HIME 300	-	t Baud	DNI bus telli Dittre all re	nsilons	Seator 1	on/here	Q. Metagel Corres	1	INDOL	File Iterated 3 messages		
21924			Elter		+	$\pm n$	-		Export	T worst on start researe		
+ ARS	(III)	56	Traverco.	ibel	D C	RIT	Nave	Unit	Her	Talue 🖸	Net	Seka
	331	Sugar	4.0%	Uwe		RA	SteeingNhed	Fair	un est	DISCO CONTRACTOR CONTRACTOR	Real and	Seka
	221	0(22)	8.0Hz	Ununce		Re:	STIRL, ANOLE	dep	0	3 [8s]	1403.5.	Seke
	321	15 (0)	6010	Unuesd		Re	STAN, SOON		0.	1	1	Seha
	5 7 1	16 (17)	0.010	Unueed		Re.	STILL D MAR		0		1015.	Seha
	301	21 (I)	0.010	Unused		Rx	STAM, D. JOAN	deg/c	. 0	0 (degit)	1	Setup
	30h		9.0 MP	Linuned	8	Rx.	lingne				1000	Setz
1	жh	000	8.070	Unned	65	RK	10.8				1	Sett
	301	300	0.010	United		Rx.	CLUTCH		0		1. 1	
	20)	0.01	0.0%	Unkied	20	RK	\$10,70k0/E	MDD	0	1 100	19.45	543.6
	201	36 (16)	8.0m	Unced		Re	04.67	rpe	0	1 105	36256	Seka
	20%	55.45	8.019	Unused		Re	WARTED_TORQUE	NDC	0	1 160	91.4	Seka
1	301		0.016	United		Ra	Casfedal			process and an endpoint of the second s	2	Seka
	301	16.00	0.0Hz	Unued	10	Ref.	GAS JEDAL	9.	0	3 N	202	Sena
	-01		8.099	Unused		Re:	Tenos				1 ()	Selig
H	401	8.00	8.014	Unceed		RK :	1899_0015236	04	- 69.	3 149 0	, 27.8	Seta
	471	24-00	10.00	Inced		84	1999,08	ee	40	3 Hep C	1, 199	Sele
										3 Mari C		

- **•** Easy recording and analysis of CAN traffic
- ▶ CAN standard/extended messages
- ► DBC import/export functionality
- ▶ J1939 support
- ▶ Possibility of online/offline decoding (storing just CAN bus traffic)
- ▶ Option of file replay (.csv transmit) through CAN output

- ► Access to the various vehicle subsystems
- ▶ Low sampling rate
- Available as Dewesoft CAN plugin
- ▶ OBDII on CAN support only (pins 6 and 14 on car connector)

CAN FD

XCP/CCP

Plugin enables data acquisition from Electronic Control Units (ECUs) supporting CCP or XCP (over CAN or Ethernet) protocol. No additional HW is needed except CAN/Ethernet port. Also no knowledge about XCP or CCP protocol is required. What is needed is a2l file with parameters definition and unlocking dll file with Key&Seed algorithm if device is key protected. Both should be provided by ECU manufacturer.

- ► XCP protocol (over CAN or Ethernet)
- ▶ CCP protocol
- ▶ Multiple ECU support

INSTRUMENTS

Plugin for FlexRay system bus, with FIBEX library import option, mainly designed for use in automotive industry. All Vector FlexRay cards are supported.

- ▶ decodes FlexRay bus
- ▶ FIBEX support
- ▶ works with Vector FlexRay cards

KiRoad / RoaDyn2000

It enables precise measurement of forces and moments, each represented as three vectors in an orthogonal reference system. Device is fully synchronized with other data.

- ▶ sampling rate up to 1250 Hz
- ▶ HW synchronization

ETHERCAT TEST RIG INTEGRATION

- ► Connection of Ethercat test rig controller together with DEWESoft hardware via single cable -> cost reduction due to less cables and no need of controller analog inputs
- ► Real-time signal processing for load analysis feedback (over EtherCAT) and simultaneous data recording inside DEWESoft SW

TEST BED PLUGIN

The communication to the test bed server is implemented as a dedicated Plug-In (IndiMaster 670 compatible).

Supported RS232 and TCP/IP connection protocols:

- ► AK Protocol
- ▶ Puma Open AK
- ⊾ D2T AK
- ⊾ Tornado AK

SOFTWARE

Aerospace I/Os

AEROSPACE INTERFACES

PCM telemetry, ARINC, chapter 10 and MIL-STD-1553 interaces support Aircrafts as well as space vehicles such as the US Space shuttle acquire onboard data, digitize them, then send the data to ground stations. They do this via pulse code modulated data stream, also known as PCM. DEWESoft[®] supports the Ulyssix Tarsus PCM-01 card to decode, visualise and store this PCM data. The data is equipped with an IRIG clock time stamp and therefore can be matched to the analogue FM channels, video channels, and other data sources. For more info, see the PCM data solution report.

CHAPTER 10 PLUG-IN

Ethernet sniffer with simple filtering capabilities and data decoding in order to extract data channels from ethernet streams. Streams can be filtered by various parameters like MAC and IP addres, source and destination port or by manual data filters.

Data can be encoded by different formats: intel, motorola, signed, unsigned, IEEE float:

Linear and non-linear (polynomial) scaling is possible.

- ▶ capability to record and playback IRIG-106 Chapter 10 files
- ▶ capability to receive and send Chapter 10 UDP Ethernet packets
- ▶ complete, all-in-one processing and recording package

ARINC429 - MIL1553

A	r_15538_BUS	AV_15538_BUS		- +× 🚟	Scan		
EXP	V MESSAGE	ON/OFF	c	NAHE	values 🗃	SETUP	
-	RT14-T-SA6	Unused		Message		Setup	
	1,1(16)	Unused		Channel	0 I-1 0 6535	Setup	
	2,1(16)	Unused		Channel	0 [-]	Setup	
-	RT14-T-SA7	Unused		Message		Setup	
-	RT14-T-SA20	Unused		Message		Setup	
7	RT14-T-5A25	Unused		Message		Setup	0
	RT14-T-5A26	Unused		Messace		Setuo	

Handles multiple ARINC 429 and MIL-STD-1553 data-buses. It can capture, filter, display and record data bus traffic. It includes extensive possibilities to convert binary data to user recognizable format. In addition to read and store bus data it can also transmit data to the bus. It provides easy to use transmit schedule designer for ARINC 429 and frame designer for MIL 1553 bus controller functionality.

- ► AltaDT and Ballard HW support
- ▶ Chapter10 input support
- ▶ RX and TX support (ARINC 429)
- ▶ BM (bus monitor) and BC (bus controller) support (MIL 1553)

Device	e type					INET rep	roducer			
Re	produc type	er sett	ings			Etherne	t			`
Portn	umber					5555				
Enable	e multica	ast								С
Multica	ast IP a	ddress				224.0.0	.0			-
Store	Save	Save as	Storing A	qoʻan	in Math M	T Plugin More	Remove			
Store Ad Index	d channel	Delete di Shown	Storing A annel A Stored	nalog luto sc C	an Bath A	ET Plugin More Received packets: 0 (m Data source 10	Remove alid packets: 0) Data type	Number of words	Packets received	
Store Ad Index	Lised Used	Delete do Shown Shown	Storing A annel A Stored Not stored	naiog luto sc C	an F Channel name NET channel	T Plugin More Received packets: 0 (m Data source ID 1	Remove alid packets: 0) Data type ACQ	Number of words	Packets received	Rescar
Ad Didex	id channel Used Used Used	Delete di Shown Shown Shown	Storing A annel A Stored Not stored Not stored	nalog luto sc C	in Math No an F Channel name PET channel PET channel PET channel	ET Plugin More	Remove ald packets: 0) Data type ACQ ACQ	Number of words	Packets received 0 0	Rescars
Store Ad Index 0 1 2 3	Lised Used Used Used Used Used	Delete di Shown Shown Shown Shown Shown Shown Shown	Storing A smel A Stored Not stored Not stored Not stored	nalog Lute sc C	in Math N an P Channel name PET dhannel0 PET dhannel3 PET dhannel3	ET Pluger More Deteived packets: 0 (m Data source 20 1 2 3 4	Remove alid packets: 03 Data type ACQ ACQ ACQ ACQ	Number of words 500 500 500 500	Packets received 0 0 0 0 0	Rescar Rescar Rescar

iNET plugin captures iNET compliant data using iNET network packet protocol. More specifically, the plugin complies with the TTC NPD data packet protocol version 3 which evolves towards compatibility with the iNET standard for network packet protocols. The NPD message protocol is an application-layer protocol that operates on top of the standard IPv4 over Ethernet network protocol and UDP transport protocol. Each NPD packet contains a 20-byte NPD Packet Header followed by one or more NPD Data Segments containing the actual data (such as ACQ carrying PCM analogue acquisition data). The iNET plugin can operate by capturing the iNET data from a local UDP port or by joining the specified multicast address and capturing a multicast iNET data stream.

- ▶ capture and store iNET compliant data
- autodect incoming iNET streams and data types
- ▶ capture data from local UDP port or by joining multicast session
- ▶ capture iNET data from multiple NICs- capture and store iNET compliant data

PCM PLUG-IN

PCM plug-in includes the bit sync, frame sync, decommutation, PCM encoder and simulator for PCM data sources. These sources can be from hardware icluding the DEWESoft PCM-FS2, Ulyssix cards or Chapter 10 plug-in. It can decode several thousand channels from those interfaces, supports embedded streams and FFIs. The data are again perfectly synchronized with the use of IRIG to the analogue data and video streams.

- ▶ Bit sync, Frame sync, Decommutator, PCM Encoder and Simulator
- ▶ DEWESoft PCM-FS2, Ullysix cards and Chapter 10 support
- ► Embedded streams, FFIs support
- ▶ Digital recording with full analysis playback
- ▶ perfectly synchronized with the use of IRIG

Industrial I/Os

S7 PLUGIN

S7 plugin communicates with Siemens PLC devices via Siemens S7 protocol over Ethernet. Direct communication between plugin and PLC devices, therefore no Siemens licenses are required. Read & write* supported. All S7 data types supported (Bool, Byte, Char, Word, Int, DWord, DInt, Real, Date, Time Of Day, Date_Time, String). Plugin is capable of communicating with multiple PLC devices simultaneously.

- ▶ communicate with Siemens S7 PLC devices
- ▶ read & write* supported
- ▶ all S7 data types supported
- ▶ simultaneous communication with multiple PLC devices

SERIALCOM

Name:	Wind Sp	peed and Angle	Startstre	ile: W	1 Eq	pected Rate (Hz]: 300.0		
+ A55	* 00	Edt Remove	Duplicate	Copy Paste	to Down	Test Response: \\$ND4//0	v, 265, R., S. 7, M. A*3D	[] Test
	Status	Name	Len	Data Type		Device Data	Conve	rted
1	vald	m	W3M	Sgnore response				
2	veld	Wind Angle		Tuneric	265		265.0	00 * 1.00 + 0.0 = 265
3	vald	Reference		Text	R		R	
4	vald	Wind Speed	-	Numeric	5.7		5.7	00 * 1.00 + 0.0 = 5.3
5	vald	Wind Speed Unit	-	Text	м		м	
6	vald	Status	•	Text	A		A	
7	vald	Check Sum		NMEA-0183 V3	CRC okay		WIMWY,265,R,5.7,M,A	

A generic plugin for Serial Communication (RS232 and compatible). It can receive serial data and extract text or numeric data from the byte stream. You can also send data to the serial device (e.g. on start of storing or every X seconds, ...).

- ▶ Generic protcol definition (ASCII or Byte protocols)
- Read and write text from serial devices
- ▶ RS232 and compatible devices supported
- ▶ Check sum calculation possible (Check-sum, XOR, CRC)
- Automatic mode or polling

TCP/IP BINARY CLIENT

serve	server is running command port is connected			Open Server	Sample Rate [H:	2] 1.00 ~	
comm				Update Data	Show online	values	
listeni	ng for data			Exit Command			
Id	Used	Stored	с	Name	Unit	Value	
1	Lised	Stored		Temperature Ch	°C	22.000	[°C]
2	Used	Stored		Sample Number	-	22	[#]

The DEWESoft® TCP/IP Binary Client plugin can receive data from external applications (e.g. LabView, ...) via TCP/IP and add this data to DEWESoft® channels. The external application must send the data in the protocol specified in the documentation: i.e. the software-team of the external application must do some programming to make their application talk to this plugin.

- ▶ allows external programs to add data to DEWESoft®
- ▶ proprietary TCP/IP protocol

MODBUS TCP/IP CLIENT

The DEWESoft[®] Modbus TCP/IP plugin can read Modbus channels over TCP/IP. It supports Boolean, Int16, Int32 and Float32 (including Word-Swap) datatypes. Note: writing to the Modbus device is currently not supported.

- ▶ Read Coils and Registers
- ▶ Modbus TCP/IP
- ▶ Word-swap support

MODBUS RTU

Read data from measurement devices over Modbus RTU protocol (multiple serial COM ports are possible), ASCII protocol is not supported.

QR CODE PLUGIN

QRCode plugin serves for scanning the barcodes and storing their content into the Dewesoft data header. The plugin supports both 1-D as well as 2-D barcodes, such as QR code and Data Matrix. Both handheld scanner and camera modes are supported.

- scan linear barcodes, QR codes and Data matrices
- store barcode content into the Dewesoft data header
- ▶ both handheld scanner and camera modes supported

Sensor I/Os

NMEA WEATHER STATION

This plugin supports one NMEA compatible Weather Station Device (e.g. Vaisala WXT520) via RS232 interface. Currently MWV and XDR messages are supported. The device must be configured to send the data automatically.

- ▶ NMEA Weather Station support
- ▶ *RS232*
- ▶ MWV, XDR sentences

MARCATOR

Enables data acquisition from MAHR digital callipers and dial indicators. Supports wire (USB) and wireless devices.

- ▶ adjustable update rate
- ▶ multiple device support

ADMA

The Adma device is a high speed/high performance gyro platform used in automotive industry to measure absolute position, velocities, accelerations, angles (yaw, pitch, roll) and angular velocities. The interface allows full control, initialisation and setup of the platform. The data is perfectly synchronized to all other data sources.

▶ SW or HW synchronization

CROSSBOW 440

The DEWESoft[®] plugin for CrossBow 440 Series Inertial System can read angular rates, accelerometer and temperature data from the CrossBow device at user definable sample rates.

- ▶ angular rates
- ⊾ accelerometer
- ▲ temperature

DEWESoft[®] plugin for the Single Byte Command API of Microstrain[®] 3DM-GX3[®] Miniature Attitude Heading Reference System. Pitch, Roll, Yaw are calculated. Note: the newer MIP protocol is NOT supported by this plugin: use the Microstrain-MIP plugin instead!

- Read acceleration, angular rate, magnetometer and orientation matrix.
- ▶ Pitch, Roll, Yaw are calculated.
- ▶ Sample rate up to 1 kHz.

MICROSTRAIN MIP

This plugin supports the Microstrain[®] MIP protocol. It was developed with a 3DM-GX4-45[™] sensor. 3DM-GX4-45[™] is a high-performance, miniature Inertial Navigation System (INS) that combines micro inertial sensors and a high-sensitivity embedded (GPS) receiver. The plugin supports most of the IMU, GPS and EF (Extended Kalman Filter) data-packets and some initialisation commands.

The plugin should also work with other MIP sensors (i.e. $3DM-GX4-35^{TM}$, $3DM-GX4-25^{TM}$).

Note: there is also another plugin "DEWESOFT-PLUGIN-MICROSTRAIN" which supports the older byte-based protocol.

- ▶ support for Microstrain[®] sensors that use the MIP protocol
- ► support for IMU, GPS and EF data packets- support for IMU, GPS and EF data packets

GRS-1

Plugin for Topcon GRS-1 devices (portable W-LAN GPS with RTK option). The plugin supports TCP/IP and UPD. RTK allows for submeter accuracy (i.e. in combination with the ADMA plugin).

- ▶ portable GPS/RTK
- ▶ WiFi (TCP/IP, UDP)

DATA PROCESSING

Basic		Filtering	Statistics		
Add math	√a+ໍb Formula	IIR filter	Basic stat.		0

Formula	Time domain analysis	Machinery diagnostics	Counting procedures
Formula	Delay channel	Angle sensor math	Counting
Filtering	Integral, derivative	Combustion noise	Acoustics
FIR filter	Latch value math	Envelope detection	Acoustic weighting filters
Frequency domain filter	Scope math	Sine processing (COLA)	Control systems
IIR filter	Time to vector transform	Tracking filter	PID control
Statistics	Frequency domain analysis		Strain, stress
Array statistics	Cepstrum		Strain rosette
Basic statistics	Correlation		Constants
Classification	Exact frequency		Vector, matrix constant
Reference curves	Fourier transform		
Frequency domain ref. curve	Full spectrum		
Time reference curve	Octave analysis		
Vector reference curve	Short time Fourier transform		
XY reference curve			

Over the past years we have covered lots of application areas with expert modules, so that the user is only a click away from the total solution. But also the standard mathematic is very powerful, and sometimes underestimated. Imagine you have a big data file of a long-term battery test. With the formula mathematics you can define logical conditions (e.g. if current > 10A AND temperature > 70° C) to quickly find the positions you are interested in. By the way, it's also possible to exclude faulty data points, such as spikes, just by defining logical conditions.

250.00

FFTRe

marian

375.00

Ð

500.00

abs('Laser 10L/Filter/Filter')>0.25 \$ Plugins All chs Matt AI CAN - x / + Laser SR/AVE Laser SR/AVE/MIN Laser SR/Filter/Filt) ^ div mod (aser SR Trigge ase 61 Functions Trigon. Logic Signals 6L/AVE Events Complex Arrays er 6L/Filter/ .635.7; Laser 10R = 5,3016 9.4 aser 10 R cleaned; - [-] Laser 10R; - [m] 07:16.636 -07:15.945 07:16.117 07:16.290 07:16.463

With the new post-processing capability, the data processing power can also be used on already stored data files. Just record raw data and apply the mathematics later!

AI 1: - M

0,3

0.00

125 00

Furthermore, often used functions like delta time measurement between two signal edges, counting how often conditions appear, or holding the signal value on a condition and many more are already prepared. Use the complex section to split a signal into real and imaginary part, while the array section is used e.g. to cut arrays or determine min/max and their positions.

Sometimes, when you experience noisy sensor output or when the desired signal band is overlapped by other major frequencies, filtering appears on the scene. The major advan-

tage of the FIR filter is no phase delay in pass band, the IIR filter is used for doing integration (acceleration -> velocity -> displacement) or derivation, the FFT filter completes the picture.

Statistical function are mainly used for calculating RMS, AVG, MIN, MAX... on time or sample base, or overall. Variance, standard deviation and higher sophisticated functions such as classification and counting are also supported; even working with array data – which can come e.g. from an FFT analysis.

MATH FEATURES

- ▶ Filtering (FIR, IIR, FFT filter, integration, derivation, ...)
- ▶ Logical conditions
- ▶ Basic Statistics (RMS, AVG; Min, MAX, ...)
- ► Advanced Statistics (Std deviation, variance, classification, counting ...)
- Reference curve (time, XY and frequency domain)
- ▶ Converting time-based to angle-based domain (resampling)
- ▶ Envelope function
- ▶ Delay channel (previous value, delta-calculation)
- Latching (hold value on certain condition)
- ▶ Angle sensor math (convert analogue input signal from tacho probe to freq. + angle)
- ⊾ Scope trigger
- ▶ Spectral Analysis (FFT, STFT, CPB, SineProcessing)

PSOPHOMETER

Psophometer is used for testing telecommunication equipment. It shows us audible effects of disturbing voltages of various frequencies. Psophometer uses weighting network in frequency domain.

Power Analysis

The POWER option of DEWESoft[®] is an absolutely high-performance tool for the calculation of power, harmonics and all related parameters. This toolbox is an excellent combination of many features and nearly all applications can be realized by using DEWESoft[®] hardware.

The unique system architecture of the DEWESoft® Power Analyser makes it possible to fulfill a couple of tasks within just one device. The DEWESoft® Power Analyser combines the functionality of a Power Analyser, a Combustion Analyser, a Data logger, a Scope, a Vector Scope, a Transient Recorder and an FFT – Harmonics Analyser. Acquiring different signals (analog, digital, counter, CAN, video etc.) simultaneously from different sources with different sampling rates and storing them in one file allows comprehensive, not yet experienced analysis for all types of applications.

POWER ANALYSIS

- ▶ More than 300 calculated parameters
- ► Power analysis for 1-12 phase AC systems Star-Delta Calculation of RMS values and Waveform
- ▶ Voltage, Currents (rms, rm, ave) and Frequency
- ▶ Active, Reactive & Apparend Power (P, Q, S, PF, cos phi, ...)
- ▶ Distortion and Distortion Factors (D, DH, QH, K, THD I, THD U)

Class A Power quality Analyser according to IEC 61000-4-30
 Harmonic Analysis up to 150 kHz according to IEC61000-4-7
 Flicker and Rapid Voltage Changes according to IEC61000-4-15

▶ Unbalance and Symmetrical components (zero-, positive-, negative sequence)

▶ Period Values with overlap for detailed fault analysis

POWER QUALITY ANALYSIS

RAW DATA STORING

▶ Raw Data Storing with up to 1 MS/s

▶ Flicker emission according to IEC64000-21

- ▶ Osciloscope View
- ▶ Vector Scope View

FFT ANALYSIS

- ⊾ Harmonic FFT
- ⊾ Full FFT
- ▶ 3D Waterfall FFT

TRANSIENT RECORDING

► Triggering on analogue, math or power channels e.g. trigger on voltage unbalance, frequency deviation, voltage dips ...

SPECIAL ANALYSIS

- ▶ DQ Transformation
- ▶ Efficiency Mapping
- ▶ Power Quality Reports according to FGW-TR3

NVH Analysis

FFT ANALYSER

FFT analyser provides all main functions for spectral analysis with advanced averaging, selectable resolution (64000 lines) or direct specification of the bandwidth (0.01 Hz). Multiple channels can be displayes in one FFT instrument for easier comparison.

- ▶ Multiple cursors and markers
- ⊾ Envelope
- ▶ Auto and cross correlation
- ⊾ Cepstrum
- ▶ Short time FFT

ORDER TRACKING

Order tracking module is the main function for measurement with varying speeds. Any input can be used: microphone, accelerometer and even the output of the torsional vibration module. It cleary separates the engine related harmonics from other frequencies like structural resonances. The high precision digital counters of the DEWESoft instrument provide accurate and repeatable measurements. Results are represented on 3D color spectogram and 2D graph for selected order and phase extraction over RPM

TORSIONAL VIBRATION

With the high precision digital counters of the DEWESoft instruments, based on a 102.4 MHz time base, rotational and torsional vibration angles and velocities (with two encoders) can also be exactly determined at high RPM speeds. Constant angle offset, uncentered mounting and sensor errors can be compensated, gearbox ratios are supported and aditional filters can be applied.

BALANCING

To cancel out the vibrations caused by the first order (unbalance), DEWESoft offers the balancing module. It is very easy to setup, just specify angle sensor and vibration sensor. It acts as a sequence: first record the initial run, than add a trial mass at the appropriate angle. Steps can be repeated if required. Depending on the rotating part, single plane and dual plane balancing is supported. All results and the raw data are stored in the datafile.

MODAL TEST AND ODS

DEWESoft provides an efficient solution, time for setup and measurement is short. The structure can be imported or drawn in the geometry editor, where the points are defined. For measurement move the modal hammer or the response accelerometers, whatever you prefer. In analyse mode click on the resonant frequencies and check the animated shape.

- ▶ Frequency response function (FRF) ▶ 0
- ▲ Coherence
 - ▲ Double hit detection
 - Averaging of hits
- ▶ Excitation and response spectra, windowing

▶ Mode indicator function (MIF)

▶ Reject hits or points

- ▶ SISO, MISO and SIMO, response group aligment
- Circle fit method for extracting modal parameters (frequency and damping ratio)
- Spectral ODS measurement is useful wherever it's not possible to measure the excitation source and the structure is excited by the machine in it's operational state.

SOUND LEVEL METER

Search	٩	Frequency weighting		Time weighting		Lok weighting
Microphone			🗆 D 🗆 Um (2)			c ~
		Definit Day (Radach)	Dataset colladated (d			
			Overall values	Dinte	rval logging	
		Cla (PL)	Leq Leq Les			UAF50 UAF10, LAF90 UAF5, LAF95
			Lpkmax			UAP1, LAP99
		Hadum & calibration				
		Air (20 uPa) V	94 d8	-2,194E No ta	7 68	Calbrate -

DEWESoft provides real time sound level calculations accoring to the international standards IEC61672, IEC60651, IEC60804. Any combination of frequency and time weighting can be calculated. The statistical values are calculated over the whole range or with the custom specific entered block size.

OCTAVE ANALYSIS (CPB)

The constant percentage band filters work in real-time (true octave) and provide 1/1, 1/3, 1/6, 1/12, 1/24 band octave spectrum. With the array statistic matehmatics it's easy to extract min/max/avg values over the whole spectrum or a specific frequency range.

SOUND POWER

Plugin supports the sound power measurements according to ISO 3741, ISO 3744 and ISO 3745. The microphone positions are calculated by the software, depending on the size of the sound source and configuration (hemisphere, paralelepiped, ...). If there are less microphones available than requested by the standard, you can build groups and change the postion between the measurement. The user is guided step-by-ste, next to the background measurement (K1, K2) there is also a repeatability check and the visualization by third-octave band analysis for the report.

Vehicle Analysis

A Hanner	Q DEWESS	vit X - Setup: CA_prot es Ch. ette: Veasure	utorial.dxs		Fle raplay] - 🗆 ×
Bore Sam S	ave as Overcels	Boling Analogin		cra. Remove		
Conductor impiges	1				Land + Setup	- tenere 🛠
trone 4	Angle senatr	S Caculators	(Therestynamics 😭	Rhock detection		
free streeter		Descentry .				
logice have (ver. 1-0)	Cylinder car	Concresson S	irsia (erej tore)mn] 🗋	And (ver) CO (ver) HO (ver)	14 2441 50	A PERSON A
+Stoke - Stendard		26.5	50 [[84]] 1.3	1 18 23 21	- And - A	
fuel spe	Polybask ex	ponent Man	Max			
Desd	· 1.52	34322	0.3379	100000000000000000000000000000000000000		
	suppose a	AN CO. CO. CO. CO.	[843] AH	Denete Seve		arose .
Cylender	Ref. cyl. 1	🐨 cyl. 2	C(4.3	Cyl. 4		
Cylinder Pressare channel	Ref. cyl. 1 Press/rt 1	T cyl. 2 Preswr 2	Cill, 3 Pressure 3	Cyl. 4 Press/re4		
Colorder Pressare channel Spritter makig. (*CA)	Ref. cyl. 1 Press,/r 1 0.000	Cyl. 2 Pressure 2 540.000	Epil. 3 Pressure 3 360.000	Cyl. 4 Pressu/ r 4 190.000		
Cyleder Pressare channel Ignoor masig. (°CA) 500,000 channel	Ref. syl. 1 Pressure 1 0.000 Inj 1	Cyl. 2 Resourc 2 96.000 19.2	24.3 Pressure 3 360.000 21.1	Cyl. 4 Pressure 4 190-000 Try 4		
Clinier Clinier Pressare channel sproor mails, (*c.k) S01/EOC channel In: of njectore	Ref. opt. 1 Pressure 1 0.000 Dry 1 D	Cyl. 2 Pressure 2 540.000 310 2 0	E.4.3 Pressure 3 340.000 21.1 3	Cyl. 4 Pressure 4 199.000 3rg 4 0		
Culorian Culorian Pressare channel aproor marks. (*C.K) 501/EOC channel Inc. of nyactions SOC trigger land	Ref. cpl. 1 Press.re 1 0.000 Ing 1 0 0	Cyl. 2 Pressure 2 540.000 352 0 0	26.3 Pressure 3 390.000 34 1 5 3	Col. 4 Pressure 4 199.000 3rg 4 0 0		
Colonies Colonies Pressare channel aproter mailio, (*CA) 500,8101 channel Inc. of rejectors 500 trigger linel 200 trigger linel	Bef. cyl. 1 Press.cr 1 0.000 Iny 1 0 0 0 0	Cyl. 2 Preswrt 2 540.000 310.2 C C C	CA. 3 Pressure 3 396.000 29 1 3 3 3 3	Cyl. 4 Presu/r 4 190-000 1914 0 0 0		

COMBUSTION ANALYSIS

- ▶ Charge analogue inputs
- ▶ Online mathematics, statistics, standard derivation
- ▶ Fast online displays: pressure, p-V diagram, CA scope,...
- ▶ Time domain sampling (cold start tests)
- ▶ iFile, Excel, FlexPro, txt,... export
- Standard deviation, IMEP, PMEP, NMEP, Thermodynamics
- ▶ Knock detection
- ▶ Combustion noise analysis (online dB noise calculation)
- ► Testbed communication
- ▶ ECU communication

ADVANCED DRIVER ASSISTANCE VALIDATION SYSTEM

- ► Ruggedized and reliable GPS IMU with high dynamics of up to 500 Hz and < 2 cm position accuracy
- ► Easy to use software with additional Polygon option for real-time car to car distance and time to collision calculations
- ► Many additional synchronized data sources like Video, CAN, CAN FD, FlexRay, XCP/CCP, OBDII,...
- ▶ Build in analysis and math for:
 - Lane departure & Lane assist
 - Collision avoidance, Blind spot detection and AEB
 - Adaptive cruise control
 - Any kind of additional R&D maneuvers

E-MOBILITY

- Motor, Inverter, Battery testing
- ► AC & DC Power Analysis
- ▶ Energy & Efficiency
- Static & Dynamic testing
- Testbed & Real-Drive Testing
- ▶ Summer & Winter testing

PASS BY NOISE

- Automated workflow and online results
- ▶ Single person system operation
- Direct IEPE microphone inputs, weather station, IR temperature, RPM, Throttle position inputs
- ▶ Build in analysis and math for:
 - *ISO 362*
 - UNECE R51.03, R41 & R117

VEHICLE DYNAMICS

- ▶ Automated workflow and driver guidance by VTS Vehicle Test Suite
- Vehicle, maneuver and sensor data base with automatic coordinate system assignment and filtering
- ▶ Built in analysis and math for:
- ECE 13H Sine with dwell
- ISO 7401 Step steer & Frequency sweep
- ISO 13674-1 Sinus Steer
- and many more

BRAKE TEST

- ▶ Automated workflow with DEWESoft sequencer & report generation
- ► Direct pedal force, travel & temperature sensor, pressure inputs via analogue or CAN
- ▶ Live results
- Build in analysis and math for:
- Standard tests (ECE13H, FMVSS 135, ...)
 ABS testing
- ABS testin
 R&D tests
- Braking comfort testings
- Possibility to add additional standards or manoeuvres

VISUALIZATION

FREELY CONFIGURE YOUR INSTRUMENT SCREEN:

Digital and Analogue Meter

						Canal Constant	200 Q 10 , 100
3596	<u>979</u>	1803	(435	2.997	0.145	3483	3084
3478	3405	3.17.I	2.942	1549	0449	2222	2805
0551	1232	1062	1356	<i>Ш62</i>	1252	2635	0,105

FFT Analyser

Recorder

Internation	MANANAN	hindun	MALLAN	NAMANA	制动的动物
Mariana	na Kalik				
MANNA			Wilson		杨秋秋记载

Scope Mode/Trigger

CHOOSE FROM A WIDE VARIETY OF INSTRUMENTS:

Wheel Force Measurement

Telemetric recipient for all wheel forces

GPS Information

3D visualisation and analysis with Polygon Plugin for position data

STORING Distributed Acquisition

With the OPT-NET option your measurement system can be controlled remotely with ease of use you couldn't imagine before. OPT-NET also serves as the center of Distributed Data Acquisition systems where you have multiple systems located either together or scattered across an entire continent. IRIG and GPS time will take care that data will stay synchronized, no matter how long the acquisition runs. OPT-NET offers three basic modes of operation (1:1 mode, x:1 mode, 1:x mode). With these three modes almost any application can be covered. From single channel expansions over remote control to distributed measurements over hundreds of kilometers - everything is possible.

1:1 MODE

1:1 mode works with single measurement system and single client. In this mode there are two types of operation: full remote control and data view only. In full remote control the client computer acts as the master of the measurement system. When the master client changes to the setup screen, the measurement system also changes to setup screen.

sition rate. In this case only one connection option is pos-

sible - the client is always the master. It starts and stops the

X:1 MODE

Multiple measurement systems and a single client are used in case of distributed measurements or if the acquisistion rates are too high to be managed by a single measurement unit. The measurement systems have to be clock-synchronized either with hardware clock (one unit is the clock master, the others are slaves) or with an external clock source which is either IRIG or GPS.

measurement on all units in the measurement network. At any time the client has access to view mode - but only to one measurement system (one-to-one connection like in single measurement system & single client configuration). Additional view devices are possible, but they can access All measurement systems have to run with the same acquionly a single measurement system.

1:X MODE

The third network configuration is to have a single measurement system controlled by one master client and additional view clients. The master client is able to change the measurement system setup, storing strategy, start and stop measurements, and many more. The view clients are only allowed to use a few channels from the measurement unit (up to the bandwidth limitation) and view and store the data on their local hard disk.

EXAMPLE SYSTEM

For bigger measurement tasks you can use the DEWESoft®-OPT-NET option to combine several measurement units to one big system of up to 1000 channels and more: simply connect them via GLAN and sync. And if the measurement is done, just disconnect and use each one independently again. The load can be distributed over the individual SBOXes. And since each SBOX has more than enough power, even for most demanding math operations of its 32 channels, all performance problems belong to the past! The SBOX supports also 1 Hz (for precise time sync) or 100 Hz GPS receiver with Real Time Kinematic option for < 2 cm position accuracy.

INSTRUMENTS

Through the entire history of DEWESoft[®] the performance in storing was one of the most important issues. The PC technology has advanced through the years and we are using all possible resources to get more from the system. We achieve more than 500 MB/second sustained stream rates. Even with such high rates, DEWESoft® prepares the data to be reloaded in a matter of seconds.

STREAMING

With a very specific data file structure we can write the channel setup, display setup, all the events, fast analogue data and slow asynchronous data from different sources in a single file. For long term measurement DEWESoft[®] offers to roll-over the file automatically when certain file size is reached or after a specified time (for example after 24 hours the current file is closed and a new one is created automatically). DEWESoft[®] makes sure that no data is lost during the file roll-over.

TRIGGERED STORING

Quite often the system needs to monitor the data for several days or weeks, looking only for very specific s. Store all the data to the hard drive and then searching for these events is of course a bad idea. To avoid this DEWESoft® offers an extensive triggering feature – we can use start/stop triggers and use pre/post time for triggering. We can also use math formulas to create combined trigger conditions. When the trigger event happens, data is stored with the fast sampling rate (with pre- and post-time), while otherwise only reduced data (min, max, average, RMS) is stored. This reduces the file size in long-term measurements.

DATABASE STORAGE

For applications which require long term storage and off line post processing, DEWESoft[®] offers a database storage solution where accumulated data is sent to a remote database server. The slow speed data is stored continuously and in case of a trigger event the full speed data is acquired and stored. Database storage is mainly used for distributed applications.

INSTRUMENTS

Database storing

The Online Data Export (ODE) plugin can export DEWESoft® measurement data during storing directly to a database or to .csv files (that can later be imported into the database), so that the data can be used for statistical analysis or real-time analysiss of production status.

1. permanent DB storing

1. PERMANENT DB STORING REALTIME MONITORING

The ODE plugin is well suited for realtime monitoring over long periods of time: i.e. store slow analogueue or statistical data continously into your database to monitor the condi-

tions of the measuring object.

The ODE plugin will store the measurement into the data-

base. The customer may use any visualisation or analysis tool

that can access the data in the database. DEWESoft® does not

offer any visualisation or analysis features or programs.

SCOPE

2. CYCLE-BASED DB STORING PROCESS MONITORING

The ODE plugin stores the production data continously into the database, so that real-time analysis, statistical analysis

and reporting on the measurement data are possible on customer request.

FILE CLEANER Pagin Pagin

The free file-cleaner plugin can be configured to automatically delete old files (i.e. DEWESoft[®] data files) in specific folders.

USE WITH CARE - deleted files cannot be restored!

▶ delete old files from your PC

AUTO SYNCHRONIZER

Small tool, which automatically transfers all datafiles from a selected local folder to the USB memory stick, in the moment the stick is connected. It can also remove the original files to free disk space.

DATA MANAGER

It can also shut down the computer after the file is transferred. This plugin is able to copy in background while the multifile storing is still going on. This allows the user to livecopy files on a different computer, and already start the export process by sequencer, which means saving time!

- ▶ copies data files to FTP or local folder
- ▶ is able to shut down computer after file transfer
- ▶ copy files during multifile storing! Start exporting already during measurement!

SELECTIVE STORE (FLIR ALARM)

Stores data of array channels only when a custom condition is true. You can easily define simple alarm-conditions and a pre-post trigger time. This will work with any 2D array channels, but is commonly used for FLIR cameras.

A typical use-case is that you want to store a DEWESoft® data-file and only when the FLIR camera detects that a certain region gets too hot, you also want to store the FLIR data to the DEWESoft® datafile, to see what's going on.

- ▶ works with any 2D array channels (e.g. FLIR image)
- ▶ custom conditions when to store the data
- example usecase: store FLIR image data only to the DEWESoft[®] datafile in certain conditions to reduce the size of the DEWESoft[®] data-file

SENDMAIL

Whenever the measurement system is unattended in a remote location, there is the need of getting a note about the system status, whenever parameters reach critical limits. This plugin will send an e-mail or SMS (by the use of a e-mail to SMS service) to one or more recipients, if an Alarm appears in DEWESoft. Multiple alarm constraints can be specified (the combinations are endless by using Math), resulting in different text, sent per mail (e.g. "Temperature Sensor 1 too high!").

- ► Alarm on e-mail or SMS
- ▶ Multiple alarms

IMPORTS / EXPORTS

ANALYSE AND PUBLISH

Even though the main focus of DEWESoft® is on data acquisition and storage, it also offers powerful analysis features including post processing.

The file preview of DEWESoft® is completely free of charge, so DEWESoft® can be downloaded and used for file preview without any cost or license.

One of the most outstanding feature of DEWESoft® is that data files, even if they are several gigabytes in size, are loaded in a matter of seconds. A special data structure allows fast reloads and zooming. You can select any part of the data in the recorder and zoom in to show all the interesting details.

EXPORT DATA

Since the main focus of DEWESoft® is on data acquisition and storage, it has extensive support for exporting the data to other file formats for post processing. You can choose different export file types, use scripting for direct reporting and export raw, reduced or angle based data.

DEWESoft® offers templates with Flexpro, MS Excel® and Famos. These templates allow you to prepare the reports

► UNV

► FAMOS

► NSOFT

Supported data formats are:

- ► Microsoft Excel®*
- ▶ Flexpro*
- ⊾ Text
- ► ASCII
- ▶ MATLAB®
- ▶ Diadem[®]
- ▶ Sony® ▶ RPC III ▲ Comtrade[®]

⊾ SDF

▶ WFT

once and execute them after DEWESoft® data export. In this way you can automate report generation and simplify the measurement process.

Alternatively you can export your measurement screen to AVI. This allows to replay the file with every standard video player without the need of installing DEWESoft®.

⊾ WAV	⊾ CSV
⊾ Google Earth [®] KML	⊾ TDM
⊾ BWF	⊾ TDF
⊾ ATI	and more

* export only possible if the program is installed on the measurement PC

REPORTS

When you are reviewing data in the analyse mode, you can make hard copies as easily as clicking the Print button in the top toolbar. Any display can be directly printed to PDF or printer. Even if we have black background as default, DEWESoft® will invert the colors to be printer friendly. Even the channel setup can be printed for documentation purposes.

REPLAY

To get an impression how the measurement was done, especially when we have video streams in the measured file, DEWESoft® offers file replay capabilities. We can choose a specific portion in the file and replay the data with the same speed as it was stored or with higher/lower speed. For example it is very interesting to view high speed videos in

slow-motion.

DEWESoft® does not only show the data, but it can also replay the data through sound card. Any channel can be chosen for replay through speakers.

DEWESoft® can also replay data of any channels through SIRIUS AO8 option.

EXCEL WRITER

The Excel® Writer plugin can write numeric and textual DEWESoft® data during maeasurement to Excel®. You can select a trigger channel and define which channels should be written to Excel®. Whenever the trigger fires, the data will be written to Excel® and can be show immediately: e.g. display in a chart or do real-time calculations (check values, use conditional formatting, etc.).

The plugin requires Excel 2007 or higher.

- ▶ write data to Excel[®] during measurement
- ▶ supports numeric and textual channels
- ▶ customer defined trigger channel
- ▶ Excel[®] can then use the data for online calculations, charts, etc.

ONLINE DATA EXPORT

1	-	4 P	DEV	VESoft X	1 SP5 b2	92			
ϵ	Acquisition	Analysis	Set	up files	Ch. setup	Measu	re		
Sto	re Save	Save as	File deta	ails Stori	ng Ani	siog	00 00 Math	Ode	2
amp	ing Groups Cha	nnels Csv	Data	base	unuy				
amp 4	Ing Gioups Cha	e Copy	Data Paste	base Dp (Down		ď		
amp Add Id	ing Gioups Cha Cha Edit Remov	e Copy	Data Paste	base Up (Exports	Down Prop	erties	Q, Db Ta	able	Setu;
amp Add Id	Ing Groups Cha Edit Remov Analogue Data	nnels Csv e Copy ame	Data Paste	base Up (Exports Database	Down Prop	erties e (5000)	Q Db Tr Analogu	able e Data	Setu;
amp Add Id 1 2	Ing Groups Cha Edit Remov N Analogue Data Statistics	e Copy	Data Paste	base Up (Exports Database Database	Down Prop Full rate 10.	erties e (5000) 0 Hz	Q Db Tr Analogu State	able ne Data stics	Setu Setu Setu

The Online Data Export (ODE) plugin can export DEWESoft® measurement data of numerical channels during storing directly to a database (currently MySQL® and Microsoft SQL Server® are supported) or to .csv files (that can later be imported into the database, Excel®, ...).

Note: array channels (like FFT) are not supported.

- write data during measurment to a database
- ▶ MySQL[®] and Microsoft SQL Server[®] supported
- ▶ write data during measurment to .csv files

TEXT IMPORT

ewesch data file i	Same -	_	_		
Test2					
Folder D:\DEWESoft\Da	ita\				
mporting uptions					
Start import at row.		Preview	WC		
Start import at col	1 8	Row	Type	Channel 0	*
		38	Ch. Name	AI 1 [V] 1 IA	
Decimal symbol:		39	Value 0	6.6085815	
Channels type:	Sync 👻	40	Value 1	6.0995483	
	Belative time	41	Value 2	5.5072021	
		42	Value 3	5.0436401	
	UTC time -	43	Value 4	4.6606445	
Sample rate:	1000	-44	Value 5	4.1433647	
Delimiters		45	Value 6	3.4088135	
• Tab		46	Value 7	2.4954224	
C Space		47	Value 8	1.5905762	
O Other:		-48	Value 9	0.83496094	

Text import plug-in imports data for text files (*.txt). It supports different channel types as well as different time formats.

- ▶ imports text files
- ▶ supports different sync and async channels
- ▶ supports different time formats (absolute time, relative time etc.)

DEWESoft® X VERSIONS

	EVALUATION	PROFESSIONAL	DSA	ENTERPRISE	AUTOMOTIVE
		Free with DS-HW	upgrade	upgrade	upgrade
High speed acquisition cards					
DEWESoft SIRIUS, KRYPTON, DEWE-43, MINITAURs	✓	✓	✓	✓	✓
Low/medium speed acquisition devices					
DEWESoft DS-NET	✓	✓	\checkmark	\checkmark	\checkmark
CPAD	✓	\checkmark	\checkmark	\checkmark	\checkmark
Vehicle buses					
DEWESoft CAN/J1939 devices	✓	\checkmark	✓	✓	\checkmark
Vector CAN/J1939 devices	✓	option	option	✓	✓
J1587/J1708 devices	✓	option	option	option	✓
ХСР, ССР	✓	option	option	option	option
Other input sources					
GPS receivers	✓	✓	✓	✓	✓
Timing devices	✓	✓	✓	✓	✓
Gyro platform	✓	option	option	option	✓
Kistler wheels	✓	option	option	option	✓
PCM telemetry	✓	option	option	option	option
ARINC 429, MIL-STD-1553 devices	<u> </u>	option	option	option	option
ScramNET	<u>√</u>	option	option	option	option
User inputs (control channels)	✓	✓	✓	✓	✓
Cameras		· · · · · · · · · · · · · · · · · · ·			
DEWESoft cameras DS-CAM		✓	✓		✓
DirectX compatible cameras	√	√	✓		✓
Gige cameras	V Outien	√ Onting	V Outline	✓	V Outing
FLIK thermovision cameras	Uption	Option	Option	Uption	Option
Photron nign speed cameras		Uption	Uption		Uption
Other	√	√	∨	✓	√
Sonson database					
TEDS cupport	¥		• •	¥	
File import (merge)		· · ·			
File export (to all formats)		· · · · · · · · · · · · · · · · · · ·			
Outputs	•	•		•	
Alarm monitoring	✓	✓	✓	✓	✓
Analog replay of data	 ✓	 ✓	 ✓	✓ ·	✓ ·
CAN output	✓	✓	✓	✓	✓
Function generator	✓	✓	✓	✓	✓
Online/Offline Math					
Basic Math Formula editor, Filters (IIR, FIR), Cepstrum, Envelope detection, Exact frequency extraction, Integration, Derivation, Octave analysis, Statistics (Basic, Array), Reference curve, Latch, Combustion noise, Angle sensor math, Counting (Histogramming), Harmonic tracking filter, Two-sided Fourier transform	✓	~	✓	\checkmark	✓
Balancing	×	option	V	×	option
Combustion analyser	✓	option	option	option	option
Fatigue analysis	✓	option	option	option	option
FFT analyser (basic)	✓	✓	✓	✓	✓
FFT analyser (advanced) Advanced cursors, bearing fault	✓	×	✓	✓	✓
FRF	✓	option	✓	✓	✓
Human body vibration	✓	option	✓	✓	option
Order tracking	✓	option	\checkmark	✓	✓
Power analysis	✓	option	option	✓	✓
Psophometer	\checkmark	option	option	option	option
Sound level	\checkmark	option	✓	\checkmark	\checkmark
Sound power	\checkmark	option	option	option	option
SRS (works only in analysis mode)	\checkmark	option	✓	✓	✓
Torsional vibration	\checkmark	option	\checkmark	\checkmark	\checkmark